/'J MU
Micro Technology Unlimited

VERY PRELIMINARY

APEX-65 OPERATING SYSTEM
USER'S MANUAL

Release 0.2: AIM (Preliminary)

July 8, 1980

Micro Technology Unlimited
2806 Hillsborough Street
P.O. Box 12106
Raleigh, NC 27605

{919) 833-1458

COPYRIGHT NOTICE 1980
Micro Technology Unlimited

This product is copyrighted. This includes the verbal
description, programs, and specification sheets. The customer
may only make BACKUP copies of the software for his own use.
This copyright notice must be added to and remain intact on all
such backup copies. This product may not be reproduced for use
with systems which are sold or rented.

Copies may not be made for multiple internal use. In the
event of the need for multiple copies to be used by the customer
in his (her) own company or organization, volume discounts are
available. 1In thed case of large anticipated volume, licenses
and royalties may be negotiated for the reproduction of the
package.

Micro Technology Unlimited
2806 Hillsborough Street
P.0. Box 12106
Raleigh, NC 27605
(919) 833-1458

DISK RELIABILITY - ITS REALLY UP TO YOU!

Floppy disks provide an excellent low-cost storage media
for programs and data, with very high reliability. When used
with the bigh-quality K-1013 Controller and APEX-65 Software,
the incidence of data read-write failures should be virtually
nil, provided a few simple handling precautions are observed.
The way floppy disks are handled and stored will materially
affect their lifetime and reliability. During the many months of
development of the APEX-65 system, we ¢&id not experience a
single (hard) read error during hundreds of hours of use,
following the rules below:

1. Always keep the diskette in its protective envelope. Get
in the habit of removing a disk from the drive directly to the
paper envelope, Dust particles look like a boulder to a
recorded bit!

2. Do not touch the exposed recording surface of the disk.
Fingerprints are a killer, too.

3. Do not bend the disk. 1Its called a flexible disk, but you
don't have to prove it.

4, Do not write on the disk directly with pen or pencil. Use
only a soft-tip marker, and write only in the label area,
or you may etch the recording media.

5. Avoid exposure to harsh environments such as extreme heat or
cold.

6. Keep the diskette away from strong magnetic fields.

What kind of disks should be used?

Any gquality soft-sectored 8 inch floppy disk may be used,
such as Dysan, IBM, or equivalent.

WHAT IS PRELIMINARY ABOUT THIS VERSION?

APEX-65 version 0.5 is a preliminary release of the
distribution operating system. It is being distributed now
so that users may begin making effective use of their K-1013
disk controller systems without having to wait unduly long
for the complete release.

This version of APEX-65 is preliminary primarily in the
sense that a large number of features are not yet implemented,
and many of the existing features are not fully implemented.
From the user's viewpoint, the two most significant shortcomings
of this version are:

1. This version requires that a block of memory outside the
System 8K of ram on the controller be dedicated to APEX-65.
This is required because many of the commands and routines will
be implemented as overlays in the final version, but overlays
have not yet been implemented. Therefore about 3K of additional
memory is needed for this version as compared to the distribution
system.

2. The SYSGEN utility program is not yet available. When
it is available, the SYSGEN program will provide a conversational
means of "customizing" APEX-65 to your particular system
environment. For now, very little adustment is possible for
individual system requirements, and little guidance is provided
on how to make such modifications.

In addition, a number of commands, utility programs and
SVC's are not available or not fully implemented. Some of the
more major of these missing or parital features include:

1. Documentation is incomplete and somewhat sketchy. Only
the first few SVCs are described. Table and Figure numbers are
missing or incorrect. No index or Table of Contents is provided.

2. The utility program for generating new disks, backup
disks, and copying the system does not exist, Instead, an
"Interim copy procedure" must be used.

3. No test is made for defective sectors during FORMATting.

4, No disk "rebuild" utility is provided (with proper care
of disks, yvou should have no need of one).

. 5. The DIR command does not exist. This is an expanded
version fo the FILES command, which will show the name, size,
creation date, etc., for all or selected files.

_ 6. RENAME command does not exist. To rename a file now
" you must use COPYF to make a duplicate with another name and
then DELETE the original.

7. The VERIFY command does not exist. This will compare
a block of memory to a disk file.

8. A number of SVC's are not yet implemented.

9. oOther minor features and Utilities are omitted.

INTERIM HARDWARE REQUIREMENTS

(AIM-65 VERSION)
1. AIM-65 Single Board Computer with power supply.

2. MTU K-1013 Floppy Disk Controller Board, jumpered in the
following configuration (which is the default shipping
configuration):

8K of System RAM addressed $8000 to $9FFF;
8K of User Ram addressed $4000 to $5FFF;
Floppy Digk Controller Interrupt: Disabled.

3. One to four full size (8 inch) floppy disk drives with power
supply and cabling, as described on page 3 of the K-1013
manual.

4. 16K of additional RAM addressed $0000 to $3FFF. An easy way
to achieve this is to use one MTU K-1016 memory board
addressed at $0000, and remove all the AIM on-board
2114 RAMs from their sockets. This memory is used by
the system for the COPYF, FORMAT and DUP utility programs.

INTERIM STARTUP PROCEDURE FOR APEX-65

(AIM-65 VERSICN)

1. Insure that your system has been properly setup with
memory at the required addresses and a properly operating
disk controller addressed with system RAM at the correct
location, as indicated in Table 1.

2. Using the AIM MONITOR, load the "BOOT " program into memory
from cassette. Later you will be shipped a bootstrap lcader
PROM chip for easy startup, but for now this file must be
loaded every time you wish to startup APEX-65.

3. 1Insure that the printer is on. APEX-65 is designed for
console devices with more than one line viewable at a time;
if the printer is not on, you will need a course in speed
reading to read the 20-character display before the next line
is displayed!

4, Insert the distribution disk into drive 0 and close the
door.

5. Again using the AIM MONITOR, begin execution at address 0000.
The disk should show immediate signs of activity lasting about

2 seconds, after which several lines should be displayed
containing only the character "3", The "?»" is the APEX prompt
for input commands. When APEX-65 is startup up, it first reads
any commands that exist on a file called STARTUP.J and then

reads commands from the Console (keyboard). The first few

">" characters are prompts issued while APEX reads the STARTUP.J
file. When the disk activity stops and the final ")>" appears

on the screen, APEX-65 is up and waiting for a command., You

are now in the APEX-65 MONITOR program. Anytime the ">" character
appears in column 1, APEX has completed a command and is waiting
for a new command.

6. You may now enter any legal command. However, if this is
your first-time power-up, proceed with the following steps.

7. Type
FILES

with a carriage return. Every APEX-65 command must be terminated
with a carriage return. The names of the files on the disk
should be displayed, followed by a summary of remaining disk
space. To temporarily pause during the display, depress the
CNTRL key. Depressing any key except CNTRL will continue the
display.

8. If all has gone smoothly so far, make a backup copy of the
disk as described in the next section. Do not proceed unless
all is well, however.

INTERIM APEX BACKUP PROCEDURE - SINGLE DRIVE

USE THIS PROCEDURE IT YOU HAVE ONLY ONE DISK DRIVE:

1. Be sure to observe the Copyright provisions described in
the front of this manual.

2. Bring up the system as described in the previous section.

3. Before the APEX-65 system or any files can be copied onto

a new disk, the disk must be FORMATTED. FORMATTING irrevocably
erases all material on the disk (including LOCKed Files and

the Operating System memory image). All new diskettes must

be FORMATTED using the FORMAT Utility, even if you buy disks
which come pre-formatted. Disks distributed with software on
them are already formatted. Never format the APEX-65
distribution disk!

4. With the distribution disk still in the drive, type
FORMAT 0

which tells Apex to Execute the FORMAT program for drive 0.
The system will respond with

VOL. SER. #=?

5. REMOVE THE DISTRIBUTION DISKETTE! Insert the new disk to be
formatted Into the drive and close the door. The System is now
waiting for you to enter a Volume Serial Number (VSN) which is

a four digit hexadeciaml number used to uniquely identify each
disk. The current system does not check the VSNs but does

write the VSN on the disk at FORMAT time. Future versions will
do some verification using the VSN, It is therefore a good idea
to give a unique VSN for each disk, and to also put the VSN

on the disk label with a magic marker (not pen or pencill)

for visual reference.

6. Type in any desired 4 digit hex number for the VSN.
The System will respond,

DISK TO BE FORMATTED IN DRIVE 0
ARE YOU READY?=

7. Insure that you have really removed the Distribution disk
and put in the new disk then type

YES

‘Any answer not starting with "Y" will abort the program. The
disk will show activity for about a half minute, after which
the Monitor prompt will be displayed. 1If you get a "FORMATTING
ERROR" message, it probably means you are trying to format a

hardware write-protected disk. Cover up the write-protect hole.

8. Type
CLOSE 0

9. Remove the newly formatted disk, and re-insert the
distribution disk. Type

OPEN 0

10. You are now ready to copy the operating system and related
files, one at a time. Type

DUP

which executes the Single-~drive file duplicator Utility.
The system will respond with

PUT SOURCE DISK IN.
FILE (OR CR IF DONE)?=

11. Since you already have the desired source disk for the copy
in the drive, just type

APEX.Z
which is the name of the first file to be copied. 4

%% TMPORTANT: WHEN MAKING COPIES OF THE SYSTEM, THE NEW
DISK MUST BE FORMATTED AND THE FILE APEX,.Z MUST BE THE FIRST
FILE COPIED TO IT. FAILURE TO DO SO WILL MEAN THAT THE NEW
DISK WILL NOT BE ABLE TO BE BOOTED UP. IT IS NOT SUFFICIENT
TO MERELY DELETE ALL OLD FILES AND THEN COPY APEX.Z; IT MUST BE
DONE IMMEDIATELY AFTER THE FORMAT,***

The System will respond

PUT DEST DISK IN,
CR WHEN READY?=

12. REMOVE THE DISTRIBUTION DISK, and insert the new destination
disk for the copy.

13, Type a Carriage return when you are ready. The System will
copy the file onto the new disk and then respond

PUT SOURCE DISK IN.
FILE (OR CR IF DONE)?=

14. Swap disks again so you have the Distribution disk . in.

15. Repeat steps 11 through 14 above, but use the following
file names instead of APEX.Z in step 11:

INTERIM APEX BACKUP PROCEDURE - 2, 3, OR 4 DRIVES

USE THIS PROCEDURE IT YOU HAVE MORE THAN ONE DISK DRIVE:

1. Be sure to observe the Copyright provisions described in
the front of this manual.

2. Bring up the system as described in the previous section,

3. Before the APEX-65 system or any files can be copied onto

a new disk, the disk must be FORMATTED. FORMATTING irrevocably
erases all material on the disk (including LOCKed Files and

the Operating System memory image). All new diskettes must

be FORMATTED using the FORMAT Utility, even if you buy disks
which come pre-formatted. Disks distributed with software on
them are already formatted. WNever format the APEX-65
distribution disk!

4. With the distribution disk still in drive 0, insert the new
disk to be formatted in drive 1 and close the door. Type

FORMAT 1

which tells APEX to Execute the FORMAT program for drive 1.
The system will respond with

VOL. SER. #=?

5. The Program is now waiting for a Volume Serial Number (VSN),
a four digit hexadeciaml number used to uniquely identify each
disk. The current system does not check the VSNs but does

write the VSN on the disk at FORMAT time. Future versions will
do some verification using the VSN. It is therefore a good idea
to give a unique VSN for each disk, and to also put the VSN

on the disk label with a magic marker (not pen or pencill!)

for visual reference.

6. Type in any desired 4 digit hex number for the VSN.
The System will respond,

DISK TO BE FORMATTED IN DRIVE 1
ARE YOU READY?=

7. Type
YES

Any answer not starting with "Y" will abort the program. The
disk will show activity for about a half minute, after which
the Monitor prompt will be displayed. If you get a "FORMATTING
ERROR" message, it probably means you are trying to format a
hardware-write-protected disk. Cover up the write-protect hole.

8. You are now ready to copy the operating system and related
files, one at a time. Type

COPYF APEX.Z

which executes the File-Copy utility program for muli-drive
systems. APEX.Z is the name of the first file which must be
copied, if the new disk is to be used as a system disk
(therefore "bootable" in drive 0). COPYF copies from drive 0
to drive 1 by default.

*#%**TMPORTANT: WHEN MAKING COPIES OF THE SYSTEM, THE NEW
DISK MUST BE FORMATTED AND THE FILE APEX.Z MUST BE THE FIRST
FILE COPIED TO IT. FAILURE TC DO SO WILL MEAN THAT THE NEW
DISK WILL NOT BE ABLE TO BE BOOTED UP. IT IS NOT SUFFICIENT
TO MERELY DELETE ALL OLD FILES AND THEN COPY APEX.Z; IT MUST BE
DONE IMMEDIATELY AFTER THE FORMAT, *#%*

9. When the Monitor Prompt appears, the file is copied (it
should take about four seconds). Repeat step 8 above for
the following files:

OVL.Z
SYSERRMSG.Z
STARUP.J
COPYF
FORMAT

These are all the files that are necessary for a System disk.
If the disk will not be used in drive 0, it is not necessary to
copy any files. However, it is generally a good idea to put
the system files on all disks for convenience.

10. Be sure to affix the Copyright notice to any backup disks.

11. Once the new disk is Formatted, it can be opened and used on
drives except drive 0, If the disk has been formatted and

the system files have been copied onto it, it can then be used in
any drive. When used in drive 0, it will be the system disk.

We suggest you put away the distribution disk for safekeeping

and only use backups for day-to-day work. The COPYF program

can be used anytime to transfer files between formatted disks.

CAUTION: IF YOU COPY A FILE TO A DISK WHICH ALREADY HAS A
FILE WITH THE SAME NAME, THE OLD FILE WILL SIMPLY BE OVERWRITTEN
WITHOUT ANY ERROR MESSAGE.

APEX-65 SYSTEM CONCEPTS

The APEX-65 Operating System is a powerful computer program
for managing the resources of a 6502-based microcomputer. In
particular, it provides a convenient method for storing and
retrieving other programs and data on floppy disk storage.

The user will normally interact with APEX-65 principally through
two built-in facilities:

1. The SYSTEM MONITOR;
2. The SVC PROCESSOR.

The SYSTEM MONITOR provides a simple method for the user
to interact directly with APEX-65 by typing commands from the
keyboard (hereafter called the CONSQLE). These COMMANDS are
most often used to initiate execution of other programs, examine
the status of various system attributes (such as the names of
files present on floppy disk), or to alter the status of the
system (for example, adding a new program to floppy disk).

The APEX SYSTEM MONITOR is initiated automatically when the
system is "booted" up; a prompting message is issued on the
console display, and the system awaits user commands. These
commands may be either built-in or user-defined. Both types of
commands are described in detail later.

All users of the APEX-65 system will utilize the functions
of the SYSTEM MONITOR to some degree. In addition, however,
programmers will also wish to utilize the facility which
permits programs to interact with the operating system. For
example, programmers will wish to be able to display messages
on the display and input characters from the keyboard. In
most conventional microcomputer systems, support for this type
of activity is provided in a limited sense by making available
to the programmer a list of addresses of system subroutines
which perform the basic input-output functions essential to
programming; the programmer can use these functions by writing
a CALL (JSR) to the appropriate system subroutine from within
the application program,

APEX-65 provides a different, higher-level method of
support for user-written programs called the SUPERVISOR CALL
(SVC). Although not found on microcomputers, SVC's are found
extensively on the finest mainframe computers. Instead of

X JSR instruction to a system routine, the SVC consists of a

BRK ($00) instruction followed by a data byte which identifies
the function desired. There are several advantages to this

" method, which are described later; the most important advantage
of the SVC is that SVCs are address-indepenedent. This means
that a program using SVCs will run without modification regard-
less of the location of the operating system. Thus, for example,
a program written on an AIM with APEX-65 at $8000 can be run
without modification on a KIM with APEX at S$E000. §SVCs are
discussed in detail in a later section.

CHANNELS

APEX-65 provides a capability not normally found on micros
called device-independent I-0. Device-independence means that a
program (or SYSTEM MONITOR command) can perform input or output
to or from a variety of devices or disk files without modifica=-
tion. For example, a program which normally displays its output
on the system console device can be re-run without such that the
output is directed instead to a printer, without any modification
to the program. Input or output can also be re-directed to a
file on disk., This provides an exceptionally powerful
capability. The devices to be used can be selected by a simple
MONITOR command, or by an executing program itself.

The key to device-independence in APEX-65 is the use of
software I-0 Channels. The SYSTEM MONITOR and programs
communicate with the outside world over channels. At any
time, these channels may be associated with a given device or
file. The standard APEX-65 system has ten channels, numbered
0 through 9. Each of these channels may be used to send
or receive data, or both. For example, a printer is normally
an output-cnly device, but the system console (terminal) can
both send and receive data. A control function can also be
associated with each channel for more complex devices; this
capability is discussed in a later section.

Certain channels have pre-defined meanings, and other
channels have been given suggested standard meanings in the
interest of uniformity among applications. These channel
definitions are given in Table 1, below.

The way in which channels are used will become more clear
in following sections which describe the SYSTEM MONITOR
commands. The section on interfacing to user programs’
describes the use of channels from a programmers point of view.

TABLE 1l: STANDARD CHANNELS

Channel 0: Reserved for internal APEX-65 operation.
Channel 1: Input commands to SYSTEM MONITOR.
Channel 2: Output from SYSTEM MONITOR.
Channel 3: Available. (Input preferable).
Channel 4: Available. (Input preferable).
Channel 5: Standard input for programs.
Channel 6: Standard ocutput for programs.
Channel 7: Available.

Channel 8: Available. (Output preferable).
Channel 9: Available. (Output preferable).
Notes:

1. Channel 1 and Channel 2 are normally assigned to the
console by default.

2. The notation "preferable" simply means that if it is
convenient to do so, input should be assigned to the lower
numbered channels and output to the higher channels. This is
merely a convention and is not enforced in any way. All
channels can be used in either direction or bi-directionally.

TABLE 2: DEVICES

Device Name Description

Console. Input-output terminal device. (Required)
Null device. (Required)

Printer.

Paper tape reader and/or punch.

Teletype (other than console).

=R

Notes:
1. Other devices may be named as desired during System
Generation, using a single letter for each,.

DEVICES

As we have already seen, APEX-65 communicates with the
outside world over numbered channels., These channels can
be associated with either physical devices or with files.
The devices available on any given system are defined at
System Generation (SYSGEN), and are identified by a single
letter. Every system has at least two devices: the system
console and the null device. The system conscle is the
terminal controlling the system (normally a CRT plus keyboard),
and is given the device name "C".

The null device is given the name "N" and is predefined
tc mean a device that doew nothing. This may seem of dubious
merit, but is actually very useful. For example, if you wish
to run a program which normally generates voluminous output,
but you do not want any output, you can merely assign the
null device and run the program.

Additional devices may be available on any given system,
and may be named as desired during System Generation. In the
interest of uniformity among systems, the recommended device
names are given in Table 2 for selected devices.

Remember that all devices have a single letter name.
The use of device names will be illustrated shortly in the
section describing MONITOR commands,

FILES

Programs, text, and data of any type can be stored and
retrieved from floppy disk for permanent storage from APEX-65.
A File is a collection of related information stored as a logical
entity on disk. Each file on disk has a unique name, designated
by the creator of the file. The name consists of from two to
twelve characters, optionally followed by a "." and a one-
character file extension. The first character must be
alphabetic. The remaining characters may be alphabetic, numeric,
or the special character "_" (underline), which is used to
improve readability of composite names and to facilitate searches
for files, as will be discussed later, The single-character
file extension may be alphabetic or numeric. If the optional
file extension is omitted, a default file extension of ".C"
is assumed by the system. Thus some examples of legal file
names include:

A2

YANK
MY3RDFILE.A
HIS_STUFF.T
OLD_X_Y_DATA.8

The first two file names above will have a default extension of
",C" appended by the system. The single character file
extension is intended to provide the user with an indication of
the kind of file. Although APEX does not enforce any partic-
ular convention, Table 3 lists the standard file extensions
which are strongly suggested for use. Unused extensions may

be freely used to cover special kinds of files not included in
the list. Note that the extension must be exactly one character
long if given.

Remember that file names must have at least two characters;
this is how APEX-65 tells the difference between a tile name and
a device name (which can have only one letter).

NOTE: The Undeline character is not available on the AIM-65
keyboard.

TABLE 3: FILE EXTENSIONS

Extension Meaning

NMAaPGmaao Qo

N
1
2

otes:

Assembly language source program.

BASIC Program source.

Command (User-defined MONITOR Command program).

Data.

Graphic data.

Hex file (i.e., paper tape type format).

Job file (i.e., a text file of MONITOR commands).
Listing.

Text.

Exexutable code other than a command (e.g., subroutine)
APEX-65 reserved system file.

If the extension is not given, ".C" will be assumed.
Other extensions may be devised by the user as needed.

APEX-65 SYSTEM MONITOR

The APEX-65 MONITOR is an interactive program which allows
the user to enter commands to the system. The MONITOR is
entered automatically during startup of the system. When the
system is "booted" up, the APEX-65 memory image is loaded into
memory from the disk in drive 0, and a file called STARTUP.J
is read by the monitor and all commands on that file are
executed. As each command is read and executed, the MONITOR
prompting character, "%", will appear on the console. At
the completion of the startup procedure, a prompting message
will be issued indicating the version of APEX-65 which is
active, and the prompt, "%" will appear. At this time,

a valid command can be entered from the console keyboard.

Every command typed must be terminated by a carriage return,
which signals the MONITOR to execute the command. Certain
characters may be used for correcting typing errors or editing
the commadn line during entry; these are summarized in Table 4.

There are two main types of commands in APEX-65: User-
Commands and Built-in Commands, Built-in commands are
pre-defined by the system. User commands may be added easily
at will by writing an assembly-language program and defining
it as a Command using the built-in SAVE command. In the
following discussion, only built-in commands will be discussed,
so the term "command" will be understood to mean "built-in
command".

In order to improve readability and ease the learning
process, APEX commands ususally consist of full English
words which suggest the function to be performed. However,
any built-in command (not user command) can be abbreviated
using the "1" character. Thus, for example,

ASSIGN
ASST!
AS!

are all equivalents for the ASSIGN command. It is only necessary
to type enough characters before the "!" to uniquely identify the
command desired.

Most commands require one or more arguments fellowing the
command keyword. These arguments tell the system what entities
the command is to operate on. For example, the command,

ASSIGN 6 MYFILE.T

has two arguments. The first argument in this case is a channel
number, and the second argument is a file name. The command
tells APEX-65 to associate channel 6 with the file called
MYFILE.T.

Arguments must be separated from the command keyword and
from each other by one or more blanks (not commas!). A few
commands use other special delimiters such as "=" in certain
places in the command; these will be clearly defined.

Sometimes ‘arguments are optional, in which case the user
may elect to specify the argument or else accept the default
argument which will be assumed by the system. 1In other cases,
the user has a choice of several different kinds of arguments.
In order to have a uniform method of describing the syntax
of various commands and arguments, the following notation
is adopted:

1. Angle brackets, "¢" and "Y', are used to enclose words
describing the kind of entry required.

2. Square brackets, "{" and "l", are used to enclose
optional arguments or symbols, which may be included or omitted
as desired.

3. Ellipsis, "...", are used to indicate an arbitrary
number of repetitions of the previous argument(s).

4. Symbols not enclosed in angle brackets are literal
symbols which must be typed exactly as shown.

5. Curly brackets, “{“ and “}“, are used to enclose each
of several mutually-exclusive choices, only one of which may
be selected.

For example, we could use this meta-language { a meta-
language is a language used to describe another language) to
describe several BASIC statements as follows:

GOTO <line #)> ,
FOR <variabley =<yalu€) TO<yalué {STEP{valué&y] DO

In the following section, each of the Built-in commands will
be defined and illustrated. Some of the commands require
numeric values for arguments. In this case, either decimal
or hexadecimal values may be used. Unless otherwise indicated,
all numeric arguments are assumed to be in hexadecimal. To
specify a decimal argument, use the "." prefix. If desired,
the "$" prefix can be used to clarify hex values. An arithmetic
expression can be used anywhere a numeric value is called for.
Arithmetic expressions may be formed using the ususal operators,
wagm omow oWk w/m o and "\". "\" js the remainder operator. All
expressions are evaluated left-to-right without any hierarchy.
The value entered may not exceed 65535 decimal or be less than
-32768 decimal (including any intermediate point in the compu-
tation). The following examples illustrate the evaluation of
numeric expressions:

100
.100

B+ 10
1+.10%3
$1498/.256
40BC

Character

DEL or CNTRL-H

CNTRL-X
RETURN

’
1

Elank
CNTRL-Q
CNTRL-C

Command

ASSIGN
BEGINOF
CLOSE
DRIVE
DUMP
ENDOF
DELETE
FILES
FILL
FORMAT
FREE
GET
GO
LOCK
NEXT
OPEN
PROTECT
REG
SAVE
SET
STATUS
TYPE
UNLOCK
UNPROTECT
name

evaluates as 256 decimal (100 hex).
evaluates as 100 decimal (64 hex).
evaluates as 2% decimal (1B hex).

evaluates as 33 decimal {21 hex).
evaluates as 20 decimal (14 hex).

100+1 evaluates as 177 decimal (BD hex).

TABLE 4: COMMAND EDITING CHARACTERS

Meaning

Backspace 1 character.

Delete entire line (start line over).
End-of-command.

Comment. Any characters after ";" are ignored.
Command abbreviation character. See text.
Separator between arguments.

Temporarily suspend output display

Command abort (during display)

TABLE 5: COMMANDS

Purgose

Assign channel to device or file.

Position channel to beginning-of-data.
Close-out operations on disk specified.
Designate default drive .

Display contents of memory.

Pogition channel to end-of-file,

Delete file from disk directory.

List names of files on disk.

Fill block of memory with a constant.
Initialize a diskette to empty state.

Release channel if assigned.

Load program into memory from disk.

Begin execution of program in memory.

Enable write-protect on disk file.

Resume execution of program in memory.

Open-up operations on a disk.

Enable hardware write-protect on system memory.
Dispaly contents of registers.

Save program on disk.

Set memory to value(s).

Display channel assignments and system status.
Display contents of file.

Disable write-protect on file.

Disable hardware write protect on system memory.
Execute User-defined command or system Utility.

COMMANDS

This section describes the function and syntax of each of
the APEX-65 built-in commands.

_ <devicey
1. ASSIGN ¢channel)]<filey [: @rivep] (...

The ASSIGN command is used to assign a device or file to a
specified channel.

EXAMPLE:
ASSIGN 6 C

assigns channel 6 to the system console device (terminal).
ASSIGN 5 MYTEXT.T

assigns channel 5 to the disk file called MYTEXT.T on the
default drive (usually drive 0). The system responds to

file assignments with either "NEW FILE" of "OLD FILE"
depending on whether or not the given file already exists.

If a mistake is made and you get "NEW FILE" when you

were expecting "OLD FILE", it probably means you mispelled the
file name; you can correct this by merely doing the assignment
over. Assigning a channel which is already assigned
automatically frees the old assignment first. You may assign
several different channels to the same file or device.
Assigning a channel to a file always positions that file to
beginning of data, even if it is already asssigned to another
channel.

CAUTION: CHANNELS 0, 1 AND 2 ARE USED INTERNALLY BY THE
SYSTEM AND SHOULD NOT BE REASSIGNED UNTIL YOU HAVE A THOROUGH
UNDERSTANDING OF THE SYSTEM OPERATION!

ASSIGN 4 C 7 YOURS.A : 1

assigns channel 4 to the console and assigns channel 7 to the
file called YOURS.A on drive 1. TIf YOURS.A does not exist,
it will be created automatically and will contain nothing.
Files which contain nothing disappear automatically when they
are FREEJ from their channel assignments.

Note that if you ASSIGN a channel to a non-existant file
on a hardware write-protected disk, you will get the message,
"DISK IS HARDWARE WRITE-PROTECTED" because APEX-65 will attempt
to generate a NEW FILE by that name.

4. DRIVF {drivep

The DRIVE ccmmend is usecd to Cdesignate whet drive shoulé be usgecd
zc the defazult dérive when a file name is supplied withcut 2

Srive explicitly given. When the system ieg initially "bccted" up
thie value is fet to drive 0.

EXEMPLE:
DFIVFE 1

cets the defeault drive to Cfrive 1.

5. DUMF (froﬁ?[ﬁfd?[k@hannelﬁ]]

Tte DUMP command displays the contents of a block of memery in
btexadecimel and as ASCII characters. {fromp is the starting
adcress tc be cdispleyed in memery. {toy is an opticnal argumert.
If crrittec, 8 bytes will be displeyed starting at from . If
specifieé, to is the final adfress of the block to ke
éisplayed; bowever, DUMP alweys cdisplaeys an exact multiple cof

8 bytes (unless e2lterecd ty a SYSGEN cption).

EXAMPLE:
DUMP 200 213

displays memory sterting at $0200 and will include memcry through
$0213. The resultirg display might lock similar to:

0200 00 21 00 AA 0O AR 00 76 .!.....Vv
0208 34 87 41 42 43 RA 00 AR 4.AEC...
0210 10 FF 55 FF 55 FF 55 FF ..U.U.U.

Of course, the actual values displayed will depend on the
centent of memory. The eight rightmost characters of each line
are the ASCII chsracters fcr the line, with each non-diesplayable
character cenverted to ".", including blanks.

NOTES :

1. R complete line is always displayecd even if the
from adéress is not ar even multiple cof 8 bytes.

6. ENDOF {channely...
The ENDOF command is used toc postion a file associated with a
specified channel to End-of-File. If the specified channel
is assigned to a device and not tc a file, then the command is
ignored.
EXAMPLE:

ENDOF 5
positions the file assigned to channel 5 to End-of-File.

Note: The ENDOF command can be used (with care) in

conjunction with the TYPE command to concatenate text files.
See the TYPE command description for details.

7. DELETE <file) [:<driver]...
The DELETE command removes a file name from the disk.
EXAMPLE:

DELETE MYDATA

deletes the file MYDATA.C from the default disk (usually drive
0).

DELETE PROG_1A:1l Y3 HIS_STUFF.T

deletes three files, one from drive 1 and two from the default
drive.

CAUTION: USE THE DELETE COMMAND WITH CARE; THERE IS NO
VERIFICATION BEFORE THE FILE IS REMOVED, SO TYPE CAREFULLY!
ALL IMPORTANT FILES SHOULD BE LOCKED IMMEDIATELY AFTER THEIR
CREATION TO PREVENT INADVERTANT DELETION BY AN ERRONEOUS
DELETE COMMAND!

8. FILES [drivel]...

The FILES command lists the names of all the files on the
selected drive, and the remaining unused space on the disk.

EXAMPLE:
FILES O

displays the files currently defined on drive 0.

. _{<value>
9. FILL {fromy<toyl=]7 "<character>"

The FILL command fills a block of memory with a constant.

¢from» is the starting address for the operation, and {top

is the ending address. (valuey? is an B8-bit arithmetic value

or expression. (characterp is any single ASCII character except
the quote (").

EXAMPLE:

FILL. 200 2FF O
fills every byte between $0200 and $02FF inclusive with $00.

FILL 2301 2301+.20=" "
fills $2301 through $2315 with $20 (an ASCII blank).

Notes:

1. As each byte is deposited in memory, the result is
verified by the system. An attempt to fill ROM, reserved-memory,
defective memory, or non-existent memory will abort the command

at the point where the error occurred.

2. The FILL command may be used to fill memory locations
reserved for APEX-65 if an UNPROTECT command has been issued.
Indiscriminant FILLing can lead to system crashes.

10. FORMAT <drived[¢serial nol]

The FORMAT command is used to irrevocably erase the entire
contents of a disk and prepare it in a format suitable for
use with the APEX-65 operating system,

CAUTION!!! THE FORMAT COMMAND WILL IRREVOCABLY ERASE ALL
INFORMATION STORED ON THE DISK, INCLUDING LOCKED FILES. DO
NOT FORMAT THE APEX-65 DISTRIBUTION DISK!!!!

{drive} is the drive number containing the disk you wish
to FORMAT. (serial no.? is a four-digit (or less) hexadecimal
serial number which is intended to uniquely identify each disk.
This serial number (called the VSN or Volume Serial Number)
is presently not used by the system but will be required on
future versions.

EXAMPLE;
FORMAT 1 1001

formats the disk in drive 1 with a serial number of $1001.
APEX-65 will prompt you with

ARE YOU READY?
before actually formatting the disk. Reply with a "¥"
or "YES" to proceed; any reply not starting with "Y" causes
the command to abort.

Notes:

1. Every new disk (NOT THE DISKS ON WHICH SOFTWARE IS
DISTRIBUTED!!!) must be FORMATted using the APEX-65 FORMAT
command, even if the disk is already "Formatted" for IBM
soft-sector operation. A recommended procedure is to FORMAT
all the disks in a box of new disks as soon as you buy them.

2. Do not attempt to OPEN a disk which has not been
FORMATted.

3. In the current version of APEX-65, FORMAT is implemented
as a Utility program and not as a built-in command. Thus FORMAT
will appear in the list of FILES on the distribution disk.

11. FREE {channel} ...

The FREE command is used to disassociate an I-0 channel from a
device or file.

EXAMPLE:
FREE 6

frées channel 6 from its prior assignment.
FREE 8 4

frees both channel 8 and 4.

Notes:
1. It is permissable to free an unassigned channel.

12. GET (file7 [: {driver] L= laux, fromﬂ.. .

Get is used to retrieve a memory image from a file and load it
into memory. <file) is the name of the file to be loaded,
¢drivey is the optional drive number for the desired disk,

and <aux. from) is an optional address specifying a starting
location for the load in memory which is different from that
which was specified when the file was SAVEQd.

EXAMPLE:
GET MYPROG

loads the file called MYPROG into memory. It will be loaded at
the address which was specified at the time the file was
created using the SAVE command. The Program Counter will be
set to the entry point address which was saved with the file.

GET OLD_PROG.X:1=100 1BQO

will load the file OLD_PROG.X from drive 1 into memory. The
first block (which is whatever size was SAVEd on the file) will
be loaded starting at address $0100, regardless of what load
address was specified when the file was created. The second
block (if it exisits) will be loaded starting at address $1B0O.
Any additional blocks (should they exist) will be loaded at the
addresses specified during the creation of the file,

Notes:

1. The file to be loaded must be an "X" format loadable
file such as is generated by the SAVE command. An attempt to
load a text file or other type file will result in an error.

2. The file may consist of several non-contiguous
blocks of memory, all of which will be loaded. See the SAVE
command description.

3. One method of moving a block of memory is to SAVE it
and then LOAD it with <{aux. from) specified as the new address.

13. Go [Ktrom2]

The GO command is used to begin execution of a machine-language
program in memory. < fromy is the optional starting address.

If ommitted, from is assumed to be the current value of the
Program Counter (as displayed by the REG command) .

EXAMPLE:
GO 200

begins execution of a machine language program at $0200.
Notes:

l. Upon entry to the program, the registers will be set
as displayed by the (or defined) by the REG command, except the
stack will be discarded.

2. The program is actually entered by a JSR instruction,
so that an corresponding RTS will return control to the system.
If a program re-enters APEX-65 in this manner, a subsequent
REG command will display the status of all registers except
the P.C. at the time of the RTS. This is useful for debugging
subroutines since the GO command can be used to enter the
subroutine, and the routine will return to APEX-65 on completion.

3. The difference between the NEXT command and the GO
command is that the NEXT command preserves the stack and enters
the program via a jump (thus effectively continuing execution),
whereas the GO command discards any stack (sets stack pointer to
FF) and enters the program via a JSR.

14. LOCK (file)[:<drivey]...

The LOCK command is used to enable the software write-protect
for the designated file(s).

EXAMPLE:
LOCK INVENTORY.T

sets the write-protect for the file called INVENTORY.T on
drive 0. This will not affect other files on the disk.

Notes:

1. The LOCK command is used to protect files against
INADVERTENT destruction. It is not intended to provide any
kind of file security. For floppy disk systems, the most
appropriate method of securing information is physical security
~of the disk. ' ’

2. The LOCK command will protect files from DELETE, SAVE,
RENAME, WRITE, and TRUNCATE commands or SVC's. It will NOT
protect the file from FORMATting or from disk I-O using
other software.

15. NEXT [{fromy]
The NEXT command is used to re-enter or initiate execution of a
machine langauge program. (from} is the optional starting
address for execution.
EXAMPLE:

NEXT

will begin execution at the address currently asssociated with
the Program Counter (P.C.), as displayed by a REG command.

Notes:

1. See the GO command description for an explanation of the
differences between GO and NEXT.

l6. OPEN drive ,..

The OPEN command is used to prepare a disk for access by the
system.

EXAMPLE:
OPEN 1

opens drive 1 for subsequent operations.
Notes:

1. Every disk mugt be OPENed prior to performing any
command or operatlon on it (except FORMAT).

2. Unlike many other systems, it is not necessary to open
or close individual files when using APEX- 65. It is only
necessary to OPEN each disk as it is inserted, and CLOSE each
disk before it is removed from the drive, or before powering
down.

3. See the description of the CLOSE command for more
details on OPEN/CLOSE considerations.

4. The disk in drive 0 is automatically OPENed by the
system when it is "booted" up.

5. OPENing a disk which is already OPEN is permissable.

17. PROTECT
The PROTECT command enables the hardware write-protect for the
System RAM memory, and enables checking for reserved memory
violations in page 0 and 1 by certain commands and SVCs.
EXAMPLE:

PROTECT

Notes:

1. The APEX-65 system normally "comes up" in protected
mode.

2, 1In protected mode, the system will not allow any SET
or FILL command into the portion of page 0 reserved for
BPEX-65, nor into any part of page 1 or the 8K block of system
memory on the disk controller. Presently, any address greater
than the base address of the System RAM on the controller is
considered reserved. In addition, the system prohibits GETs
which load into page 0, 1 or system RAM.

3, The effects of PROTECT are nullified by an UNPROTECT
command.

4. PROTECT and UNPROTECT do not affect the disk or the
effect of LOCK and UNLOCK commands.

18. REG [(reg. desigy [=] {Svalue?} {(_quoted character}}] ..
The REG command is used to display or alter the contents of the
microprocessors registers. <reg. desig.? is an optional register
designator (register name) to be assigned the value or character
specified.
EXAMPLE:

REG
will display the contents of the registers.

REG A=0
sets the A register to $00.

REG X .65 y="B" A = 10

sets the X register to $41, the Y register to $42, and the A
register to $10.

The REG command without arguments displays the register
contents in the format descirbed below:

vesses.Current Program Counter (P)

. .

. e.v....Contents of memory at P through P+2

. BContents of Accumulator (A)

P=1B1F (201Al17) A=2A X=05 ¥=00

S=FD

Contents of X reg....ccees 5

Contents of Y reg...ccceeee

Contents of Flags(F)......

.
-
-
.
.
.

.
-
.
.
.

Current Stack pointer(S)....

All values are given in hexadecimal. The key letters given
in the display are the same as the {reg. desig.? needed to set

the register values.

(continued)

The individual bits in the Flags (F) register display
are the same as the hardware Processor Status Word, as
described below:

. N .V .B.D.I . Z ., C
: : : : : : : :.....Carry
: : : : : : :.........Zero result
: : : : : : «eeos.Interrupt disable
: : : : :Decimal mode
: : : :.... Break command
R Undefined

Cessseassanrssssnsesessesssss.Overflow

...... « wis ww 8 Whe S 8 W s Re e e e e wvs sve s e« aNEGAEIVE Fesult

19. SAVE (file}E{dr ive7] [= (entry)] {frony L= {aux. from’}j {top ...

The SAVE command is used to save one or more blocks of memory on
floppy disk; thereafter, the saved program can be used as a
user-~defined command.

{file) is the name of the file (i.e., the new command name).

{drive) is the optional drive number.

(entry) is an optional entry point for the program. An
entry point is the address at which execution is to be initialted
in the program. Normally, entry is omitted, in which case the
starting address will be uised for the entry point.

{from» is the starting address for the block of memory.

aux.fromy is an auxilliary load address. This is normally
omitted. 1If specified, it is used to indicate that the block of
memory being saved should subsequently be loaded at. a different
address when retrieved using a GET command (or by executing
the name of the newly created command). :
<?qy is the final address of the block to be loaded.

EXAMPLE:
SAVE DOIT 200 2DF

saves the contents of memory locations $0200 though $02DF
inclusive on a file called DOIT on drive 0 (by default). Since
no optional arguments were specified, the entry point will be
saved on the file as $0200, the same as the starting address of
the block, and subsequently typing DOIT will cause the block

to be loaded from disk into memory at $0200, and execution begun.

SAVE RALPH_PROG.C:1 = 2424 2000 20FE 340 3AQ

saves a file called RALPH_PROG.C on drive 1. The file contains
two memory blocks, the first from $2000 to $20FE, and the second
from $0340 to $03A0. The entry point is $2424., Subsequently
typing a RALPH_PROG:1l command will cause the two blocks of memory
to be re-loaded from disk, and program execution begun at $2424.

SAVE SUBPKG.X 400=2000 400+.100

saves 100 decimal bytes of memory on a file called SUBPKG.X,
starting at $0400. Since an aux.from} address was specified,

a subsequent GET SUBPKG.X command will cause the memory block to
be loaded into address $2000 and up instead of the $0400 address
at which it was saved.

Notes:

1. The existentce of the "=" in the command indicates the
existence of one of the optional arguments entry or (aux.froﬁ).
Pay careful attention to the postion of the arguments.

2. When using €aux.from?, note that no relccation of any
possible address references is made; the memory block is still
exactly as saved. Therefore specifying {aux.from? is not
normally a satisfactory method of relocating machine language
programs.

3. The {entryp address does not have to reside inside any
of the saved blocks.

4. The number of blocks saved on a single file is limited
only be the number of {fromy/{toc) arguments you can fit on the
command line. .

(value?
20. SET {fromp [=] "{character)"

The SET command is used to set the value of memory locations.
{from)» is the starting address at which to set values.
{value) is a numeric value or expression which evaluates to

an 8-bit quantity.

{character} is an ASCII character.

EXAMPLE:

SET 2000= 1B
sets address $2000 to $1B.
SET 2006 "ABC"

sets $2006 to $41 (ASCII "A"), $2007 to $42, and $2008 to $43,

SET 200 80-.10 " " 80-.20 " n

sets $0200 to $76, $0201 through $0203 to $20 (ASCII blank),
$0204 to $6C, and $0205 thourh $0207 to $20.

Notes:

1. The "=" is optional and has no effect on the meaning of
the command,

2. As each byte is deposited in memory, it is verified
by APEX-65. If reading the byte back from memory results in a
bad compare to the value deposited, an error messade is issued.

3. Addresses are checked for validity before depositing
each value. If an attempt is made to set Reserved memory, an

error message will be issued, unless an UNPROTECT command was
issued previously.

21. STATUS

The STATUS command is used to display the current channel
assignments on the console.

EXAMPLE:
STATUS
displays the status of all channels which are assigned, and

will display the file count and remaining disk space for the
disk in drive 0.

Notes:

1. Channel 1 and 2 will always be assigned, since they are
the channels for command input and output. If you FREE either
of these channels, they are automatically re-ASSIGNed to the
console. However, you can re-ASSIGN either or both to
other devices.

(file} [1 Lr 1ve)_i {f11e> [: &r 1ve>]
e .

22, TYPE 4<chann {channel}
{device) ; <pev1ce}

The TYPE command is a versatile command most often used for
displaying a text file on the console or printer. The

first argument is required and is the file name, device name,

or channel which is to be typed. The second argument is
optional. If ommitted, the output will be typed on the

console ("C"). If a file name is given for the second argument,
then it will be the destination for the type command. A
channel previously assigned can also be the destination.

EXAMPLE:
TYPE MYSOURCE.A

will display the file called MYSORCE.A on drive 0 on the console.
TYPE C NEW.T

will accept input from the console keyboard and put it on a file
called NEW.T. This is one way to create a text file.

TYPE 5 STUFF.T:1

will accept input from the file or device assigned to channel 5
and output it to the STUFF.T file on drive 1.

NOTES :

1. When the source for the TYPE command is a device, for
example the console, CNTRL-Z is used to enter and end-of-file
and therefore terminate the TYPE command.

2. 1If a file name is given for either argqument, the file
will be automatically positioned to beginning-of-data before
typing starts. However, if a channel is used for the argument,
no positioning takes place. This fact can be used to advantage
to copy parts of a file or concatenate files. For example:

ASSIGN 6 OLDTEXT.T
ENDOF 6
TYPE C 6

can be used to append lines onto the exisitng file OLDTEXT.T
from the console. However,

TYPE C OLDTEXT.T

would overwrite the beginning of the file, so be careful!

23. UNLOCK Q‘ILE}[: HRIVEY . ..

The UNLOCK command is used to disable the software protect for
the file specified, which was previously set by a LOCK command.

EXAMPLE:
UNLOCK VALUABLES

removes the write-protect from the file called VALUABLES.C on
drive 0.

NOTES:

1. It is permissable to UNLOCK a file which is not
LOCKed.

24, UNPROTECT

The UNPROTECT command is used to remove the hardware write-
protect from the system RAM on the disk controller, and to
defeat the reserved-memory protection for various commands.

EXAMPLE:
UNPROTECT
NOTES :

1. Once UNPROTECTED, the SET, FILL, and GET commands will
be able to freely overwrite normally-reserved areas of memory
including the part of page 0 used by APEX, page 1, and the
System RAM on the disk controller. Naturally, casual abuse
of this facility is likely to cause strange and invariably
unpleasant results. '

COMMAND EXTENSIONS FOR AIM

The AIM-65 version of APEX-65 has several extensions to the
standard system to support features provided in AIM ROMs. These
are as follows:

1. Special keys:

a. The ESC key exits APEX-65 and enters the normal
AIM Monitor.

b. Once APEX has been brought up, you may exit the
AIM monitor and re—enter APEX-65 Monitor by depressing F3.

Cc. CNTRL will temporarily halt display of APEX-65
console ouput. Depressing CNTRL-C and any key will abort
the command in progress, if it is performing output.

d. If you depress RESET, you may re-enter APEX by
using the F3 key. However, using RESET may leave the system
in an undefined state, especially if performing disk operations.
Also, the first operation you attempt following the reset will
give the error message, "PREVIOUS DISK NOT CLOSED {OR RESET
HIT)". This is a warning message, indicating the previous
operation may not have been properly completed.

2. Special Commands:

a. The AIM5 command is used to enter AIM BASIC in ROM
from APEX-65. You may LOAD and SAVE BASIC programs on disk
by answering the "IN=" or "OUT=" prompting message with "U"
instead of "T". The system should reply with "FILE=". Enter
any valid APEX file name. We suggest the extension "o
for AIM BASIC programs (e.g., START.5, LIFE.5:1 are valid file
names). CAUTION: YOU MUST ENTER BASIC USING THE AIM5 COMMAND,
NOT BY GOING TO THE AIM MONITOR AND ENTERING A "5% COMMAND, IF
YOU WISH TO USE DISK FILES! The AIM5 command performs the
necessary setup to activate disk files.

b. The AIME command is used to enter AIM Editor from
APEX-65. You may Joad and store text files on disk by using the
"U" reply to the "IN=" and "OUT=" prompts, and specifying a
file as for BASIC above. We suggest the file extension "E".
CAUTION: YOU MUST ENTER THE EDITOR USING THE AIME COMMAND, NOT
BY GOING TO THE AIM MONITOR AND ENTERING AN "E" COMMAND, IF
YOU WISH TO USE DISK FILES! The AIME command performs the
necessary setup to activate disk files.

SUPERVISOR CALLS (SVC)

Interfacing User Assembly-language Programs to Apex

Introduction

This section discusses methods by which user-written
assembly=-language programs may communicate with the outside
world through the APEX-65 operating system, and take advantage
of various utility functions provided by the system., Using
the functions described here can greatly reduce program
development time and effort.

Most operating systems provide a degree of suppcrt for
assembly-language programming by making available the addresses
of certain system subroutines which the user can call to
perform I-0 or other functions. For example, to output a
character to the console, you might put the ASCII character into
the A register and call the driver subroutine for the console
display device. APEX-65 does not use this method, but instead
provides a more powerful tool called the Supervisor Call
Instruction (8SVC). The SVC concept is not new; SVCs are
found in various forms on many large mainframe computers.

The following discussion assumes a knowledge of 6502
assembly language programming on the part of the reader.

How SVC's work

The APEX-65 implementation of the Supervisor Call
capability consists of a BRK instruction ($00) followed by
a one-byte numeric code which tells the system what function
is required. The code numbers are listed in Table 1.
Effectively, the SVC is a lot like a JSR (Call Subroutine)
instruction, except that it is two bytes long instead of
three, and the second byte is not an address, but a code
which tells what pre-defined system subroutine is to be
called.

Why are SVC's better than a straightforward JSR? There
are several reasons:

1. 8VCs are address-independent. This is by far the
most important advantage of SVCs. It means that future system
upgrades which may alter the addresses of actual system routines
~ will not affect the SVC numbers, and therefore will not
adversely affect programs using SVCs. It also means that,
for example, a program on an AIM-65 computer with APEX at $8000
can be transported to a KIM system with APEX at SE000 and run
without modification. If subroutine calls were used instead,
7t would be necessary to patch all the JSRs to the system
routines before execution.

TABLE 1

SUPERVISOR CALL NUMBER CODES (SVC'S)

SVC# Description Pass Regs. Returns Regs.
0 Return to APEX-65 Monitor - -
al: Not currently defined
2 Output inline message (see text) - -
3 Input byte from channel X A, F
4 Qutput byte to channel X -
5 Input line from channel X,U5 A,Y,F
6 Qutput line to channel X,Y,U6 -
7 Output string on channel X,Y,U06 -
8 Decode ASCII hex to value X,Y,U05 A,Y,F,U0
9 Decode ASCII dec. to value X,¥,U05 A,Y,F,U00
10 Encode value to ASCII hex X,Y,00,06 Y
11 Encode value to ASCII dec. X,Y,u0,U06 Y
12 Querry default buffer addr. - U5,U06,Y
13 Not currently defined
14 Querry channel assignment X A,F
15 Read record from channel X,U01,02 F,U01,02
16 Write record to channel X,U1,02 F
17 Position file to beginning X -
18 Position file to end-of-file X -
19 Position file X,07 u7
20 Querry file position X X,07
21 Assign channel to file/device X,A A,F
22 Free Channel X -

Note: This is a preliminary list. Other functions will be added
later.

2., 8SVCs user less memory. Two bytes are cheaper than
three.

3. SVCs preserve the values in registers, All registers
are restored to their condition upon entry to the SVC when
returning to the calling program, except when returning
values to the calling program. This saves the programmer
a lot of unnecessary saving and restoring registers.

4, SVC's are easier to debug. If an error is detected
by the system while processing an SVC, the program will
abort and APEX-65 will display the exact address of the
offending supervisor call, the values of all the registers
at the time of the SVC, and an error message explaining the
difficulty. 1Illegal or unimplemented SVCs are also trapped
in the same manner.

Initialization and Parameter Passing

In order to use SVCs, the user program must first enable
the Supervisor by setting the SVC Enable flag, SVCENB, to
$80 (bit 7 must be set to 1). If SVCs are not enabled, any
BRK instruction will simply return to the Monitor with a
display of the location of the BRK and register contents.
Note that the SVCENB flag must be set to $80 by the user
program, and will not work if set from the Monitor using the
SET command,

Usually, some type of argument needs to be passed to
the Supervisor and/or returneg to the user program from the
Supervisor. The method for passing arguments is defined
for each SVC individually, and may bd done three possible
ways:

1. Arguments may be passed or returned in 6502 registers.

2. Arguments may be passed in one or more "pseudo-registers"
in page zero.

3, Arguments may be passed "in-line", immediately following
the SVC.

Before proceeding further, an example program will
illustrate SVC usage.

Example Program l: Displaying text message.

The first SVC we shall examine in an example is SVC 2,
which outputs ‘a message over a channel, This is a very
unusual SVC in that the argument is passed in-~line. However,
it is so frequently needed in programming that it deserves
our first attention.

PROBLEM: Write a program to display the message "HELLO THERE."
on the console,

SOLUTION:
SVCENB e $11 :SVC ENABLE FLAG LOCATION
.= $200 ; PROGRAM ORIGIN
GREET LpA . #S$80
STA SVCENB :ENABLE SVCS
BRK :SVC...
.BYTE 2 ;...#2 = OUTPUT INLINE MESSAGE...
.BYTE 2 »...OVER CHANNEL 2...
.BYTE 'HELLO THERE.'
.BYTE 0 ;0 TERMINATES MESSAGE TEXT
RTS ;sRETURN TO MONITOR OR CALLING PROGRAM
.END
EXPLANATION:

The program begins by enabling SVCs (note: once enabled,
SVCs remain enabled until disabled by writing $00 into
SVCENB: it is advisable to disable SVCs when not needed).
The BRK instruction together with the first .BYTE 2
pseudo~instruction comprise the SVC, and Table 1 tells us
that an SVC 2 is used to display an inline message. The
second .BYTE 2 tells the System what channel to output the
message on. Channel 2 was selected for our example because
it is assigned to the console display by default. Of course,
it could be re-assigned to any device or file. Following the
channel is the text of the message, which can consist of
up to 255 bytes and is terminated by a $00. The $00 also
is the last argument of inline code. The System will output
the message over channel 2 and then return control to the
instruction following the $00 byte; in this case, merely
the RTS whcih terminates the program.

Remember that SVCs do not alter any registers except
to return values to the calling program; since SVC 2 does
not need any returned values, no registers are altered.
This is a big benefit, since it means that you can put
inline messages anywhere you please in your program for
debugging purposes without having to worry about side effects
to the registers.

Note that SVC 2 does not output any carriage return
automatically; if you want to output control characters,

you may include them explicitly in the message, as illustrated
below.

Example Program 2: Display message on a new line.

PROBLEM: Repeat Problem 1, above, but start the message on a new
line.

SOLUTION:
SVCENB = $AQ
GREET LDA $80
STA SVCENB ;ENABLE SVCS
BRK
_BYTE 2 ;SVC 2 = INLINE MESSAGE
_BYTE 2 :...ON CHANNEL 2
_BYTE 13 :13=$0D=ASCTT CARRIAGE RETURN
.BYTE 'HELLO THERE,'
.BYTE 0 : TERMINATOR
RTS
EXPLANATION:

The only change to this program from Example Program 1 is
the addition of the ".BYTE 13" at the start of the message, which
produces a carriage return. Any control characters desired can
be embedded in the message in this manner, except ASCII NUL
(becuase NUL = $00, the message terminator.).

There are three very common sources of trouble when using
SVC 2 to generate messages:

1. Forgetting to enable SVC's (in which case the program
will simply return to the Monitor with a display of the
registers when the first BRK instruction is encountered);

2, Forgetting the CHANNEL argument (which usually results
in an error message of "ILLEGAL CHANNEL" or "SELECTED CHANNEL IS
UNASSIGNED") ;

3. Forgetting the zero-byte terminatior for the message,
(which often results in your program going into "hyperspace"
after displaying the message).

Passing Arguments to Supervisor in 6502 Registers

The example programs above passed their arguments to the
Supervisor in-line. A much more common method of parameter-
passing is the use of the 6502 registers. The following
example illustrates register parameter passing.

Example Program 3: Character Input-Qutput.

PROBLEM: Wrtie a program which reads a stream of bytes from
channel 5 until a "." character is encountered, or end-of-file
is reached. Display a message indicating which of these two
events occurred. Assume channel 5 has been previously assigned
to a valid file or input device.

SOLUTION:

SVCENB = SAQ

STRMIN LDA #80
STA SVCENB

NEXTCH LDX #5 sCHANNEL 5 FOR INPUT STREAM
BRK
.BYTE 3 ;SVC #3 = INPUT CHARACTER FROM CHAN (X)
BCS EOFENC :BRANCH IF END-OF-FILE ENCOUNTERED
CMP #'. ;ELSE EXAMINE CHARACTER INPUT
BNE NEXTCH :IF NOT ".", READ MORE
BRK
.BYTE 2 ;ELSE DISPLAY INLINE MESSAGE
.BYTE 2 :...0ON CHANNEL 2
.BYTE 13,'"." ENCOUNTERED."',0 ;GIVE MESSAGE
RTS

EOFENC BRK

) .BYTE 2 ;SVC 2= INLINE MESSAGE
.BYTE 2 3...0N CHANNEL 2
.BYTE 13,'E-O-F ENCOUNTERED.',0 ;GIVE MESSAGE
RTS

EXPLANATION:

This program illustrates a number of aspects of SVC usage.
The line labelled NEXTCH is used to load the channel number
desired into X. The Supervisor expects to find the channel
number in register X when the SVC is processed, as is detailed
in the individual SVC descriptions. SVC 3 returns the character
read in the A register, and sets the carry flag only if End-of-
File was encountered. End-of-File is an important concept.
The End-of-File flag (the carry flag) is set by the SVC
processor only if no more characters can be read from the
selected channel. If the input channel is the console keyboard,
this means that CNTRL-Z was entered (the CNTRL-Z character is
292 returned in A). 1If channel 5 was assigned instead to a file,
it simply means that the previous character was the last
character in the file. The programmer should always check for

End~of-File when doing any kind of input operation, so that
programs are device-independent. No error will occur if you
attempt to read beyond end-of-file; the result in A is just
not meaningful. It is the Programmer's responsibility to
test the carry on every input operation and take appropriate
action if it is set.

In our example, once we have ascertained that E-O-F was not
encounered, the character received from channel 5 is checked
to see if ti is a ".". 1If not, another character is read.
Once one of the two terminal conditions is met, an SVC 2
is used to issue a message to the console (channel 2) indicating
which event occurred.

Passing Arguments in APEX Pseudo-Registers

Sometimes it is necessary to pass addresses or other 16-bit
information to the SVC processor. The 8-bit A, X, and ¥
registers of the 6502 are inadequate for this purpose, so a
set of eight Pseudo Registers (hereafter called P-registers or
simply P-regs) are providedin zero-page, as shown in figure 1.
P-regs U0 through U6 are each 16 bits wide; U7 is 24 bits wide,
and is used for file positioning, as we shall see later. Note
that if SVCs are not enabled, these P-regs are not used for
any purpose whatsoever by the system, and may be freely used
as ordianry program memory by application programs. Values to
be passed to the SVC processor are installed in these P-registers
in the usual manner for memory. The SVC processor expects to
find certain addresses or values in specific P-registers,
depending on the SVC. For example, most I-O functions (except
single character I-0) use U5 to hold the address of an input
buffer and U6 to hold the address of an output buffer. Each
SVC description tells what P-registers are used, if any.
Certain SVCs return information to the app]1cat1on program in
P-regs, For example, SVC 12 ($0C) does not pass any P-regs
to the SVC processor, but the system returns U5 and U6 to the
application. The addresses returned are the location of the
system input and output line buffers, respectively.

Example Program 4: Line-Oriented I-O.

Most programs need to deal with input and output of strings
or lines of characters. Several SVBCs are provided for support,
Applications programs will make heavy use of the 6502 Indirect,Y
addressing mode in these applications. In general, P-register
US (for input) or U6 (for output) must be initialized to point
to the start of a buffer containing the current line of interest.
The Y register is used to index the particular character of
interest within the line. Normally, the System input and Output
buffer are the most convenient to use, since an SVC 12 will
automatically setup the proper addresses in U5 and U6, but the
programmer may select any location for the buffers. The System
buffers are sufficiently large for lines of up to 80 characters.

The following problem illustrates line-processing.

PROBLEM: Write a program to copy line of input text from channel
5 to channel 6 until an End-of-File is encountered. Assume
Channel 5 and 6 have been given appropriate assignments.

SOLUTION:
SVCENB = $A0
us = $0A :P-REG U5
U6 B U5+2 +P-REG U-6
COPY56 LDA #80
STA SVCENB :ENABLE SVCS
BRK
.BYTE 12 :SVC 12 = QUERRY SYS. BUFFER ADDRESSES
NEXT LDX #5 ;CHANNEL 5 FOR INPUT
BRK
.BYTE 5 ;SVC #5 = INPUT LINE TO BUF. AT (U5)
BCS EOFENC :BRANCH IF END--OF-FILE ENCOUNTERED
TAY ;ELSE SAVE CHARACTER COUNT IN Y...
TAX :...AND X TOO
LOOP LDA (U5) ,Y ;COPY CONTENT OF INPUT BUFFER...
STA (U6),Y :...TO OUTPUT BUFFER
DEY
BPL LOOP :1...UNTIL WHOLE LINE COPIED
TXA ;THEN RECALL LINE LENGTH...
TAY ,...TO Y
BRK
.BYTE 6 :SVC #6 = OUTPUT LINE AT (U6)
JMP NEXT -REPEAT FOR NEXT LINE
EQFENC RTS ; END
EXPLANATION:

You may have wondered why byte-oriented I-0O was not used
to copy the file since this would be substantially simpler.
One reason is that the line-input SVC (SVC #5) supports the
line editing characters Backspace (DEL or CNTRL-H) and
CNTRL-X (start line over), but the byte-input SVC (SVC #3)
does not. Thus using line input gives more flexibility when
the input channel is assigned to the keyboard (Consocle). SVC
number 3 (byte input) returns control to the application program
immediately when a key is depressed; SVC number 5 does not
return until an entire line is entered, terminated by a carriage
return. The editied line is returned to the user program in
the buffer pointed to by U5, and the number of characters in the
line is returned in the 6502 A register. The carriage return
is replaced in the line with a $00 byte, and the character count
in A does not include it,

The Example program starts by enabling SVCs and setting U5
and U6 to the addresses of the system line buffers, using the
SVC 12 function. An SVC 5 is then used to input the source

input line into the buffer addressed by U5, and End -of-File

is tested as before. Note that the SVC 5 function returns the
character count in A and Y set to 0 {(therefore ready to

index the first character of the line). The character count of
the line is transferred to the X register as a temporary save,
and the line is copied (backwards) from the input buffer to

the output buffer. The output buffer is then output over channel
6. Note that the character count must be passed in the ¥
register. In the example, this character count was recalled

from X to Y through A.

An alternative to copying the input buffer contents to the
output buffer would simply be to copy the contents of U5 to U6.
Normally, however, you will want to use separate input and output
buffers since you will be performing other operations on the
output line besides just copying the input.

Example Program 5: Read Hexadecimal Input Value.

Looking in Table 1, you may be surprised to find no direct
way to input or output numeric values. Instead, a combination
of two SVCs must be used to perform this function. This turns
out to be a great deal more versatile. A pair of definitions
are needed to get us started:

Decoding is the operation of scanning a string of ASCII
characters and returning the numeric value they represent.

Encoding is the inverse operation; encoding accepts a
(binary) value and returns the string of ASCII characters
representing its value,

For example the ASCII string " 010B " when decoded
returns the binary value 0000000100001011 ($010B), assuming
that hexadecimal decoding was selected. The following problem
illustrates how to input and deccde a hex value.

PROBLEM: Write a subroutine which reads a hexadecimal number
from channel 5 and returns its value in P-register UO.

SOLUTION:
SVCENB = $A0
HEXIN LDA 480
STA SVCENB ;MAKE SURE SVCS ARE ENABLED
BRK '
.BYTE 12 :SVC 12 = GET BUFFER ADDRESSES
LDX #5 ;CHANNEL 5 FOR INPUT
BRK
.BYTE 5 ;SVC 5 = INPUT LINE
BRK
.BYTE 8 ;SVC 8 = DECODE HEX VALUE TO U0

RTS

EXPLANATION:

The enabling of SVCs and selection of the System buffers
should be familiar by now., 1In practice, these functions would
probably be performed only once during program initialization,
and would not be included in this subroutine, thus reducing the
subroutine to a six line routine. The SVC 5 operation inputs
a line into the buffer addressed by P-register U5, as previously
seen. The SVC 8 function serarches the buffer (starting with
the character indexed by Y, which was 0 in our case since SVC 5
always returns Y=0) for a character string representing a hex
value. Note that any number of leading blanks may preceed the
number, and the number may have any number of characters, so long
as the represented value does not exceed $FFFF. For example,

"o0p7 ", " 0D7 " and "D7" will all be acceptable, 8VC 8
keeps scanning until a non-hex character is encountered. Thus,
for example, " 2B7,2 " will return U0 = $02B7, because the

comma will terminate the scan. When control is returned to the
calling program, the Y register pcints to the delimiter (the
comma in the example immediately above), and the A register
holds the delimiter encoutnered. This is very useful when
scanning a line containing multiple values. In addition, the
carry flag is returned to the calling program as a "Valid

Data Enocuntered" flag. Although the exaple program above

did not do so, it is easy for the application program to

check the status of the carry upon completion of SVC 8; if it
is not set, then no valid hex digits were encountered prior to
the delimiter (or end-of-line). Note that the end-of-line
delimiter is returned as $00.

Note: The example programs presented have used the system
input and output line buffers. In practice, during program
generation and debugging, it is advisable to use other buffers
because any any interaction with the system will cause your
buffers to be "wiped out" (for instance, any command you enter
goes into the system input buffer). To define you own buffers
merely copy the address of the buffers to U5 and U6, instead of
using SVC 12,

SVC_DESCRIPTIONS

SVC #0 ($00)

PURPOSE: Return to APEX-65 Monitor,
ARGUMENTS: None.

ARGUMENTS RETURNED: None.
DESCRIPTION:

SVC #0 returns control to the APEX-65 MONITOR. It has two
advantages over simply using an RTS to return to the Monitor:

1. It can be executed anywhere, even in a subroutine,
proided that SVCs are enabled;

2. The value of the Program Counter (P) shown by the
REG command after returning will show the address of the SVC 0;
using a RTS to return to MONITOR will not update the P register
value shown.

EXAMPLE:
SVCENB = SAQ
LDA $80
STA SVCENB
BRK
.BYTE 0 ; RETURN TO MONITOR.

SVC #2 (502)
PURPOSE: Output inline message over channel.
ABGUMENTS:

First Byte after SVC 2 = desired channel number.

Second throuth Nth byte = desired ASCII message text,
terminated by a zero byte ($00).

DESCRIPTION:

SVC 2 can be used to display a message at any point in a
program (provided SVCs are enabled). It does not effect any
registers. The message may be any length up to 254 bytes, and
can contain any byte including unprintable characters, except
NUL ($00), which is the message terminator. Control will be
returned to the instruction immediately following the 0O-byte
terminator. The channel specified must be assigned to a valid
device or file.

EXAMPLE;
SVCENB = SAO ; LOCATION OF SVC ENABLE FLAG
CR = 13 :ASCII CARRIAGE RETURN

LDA #s80

STA SVCENB

JSR DOIT7

BRK
.BYTE 2 :8VC #2 = OUTPUT MESSAGE...
.BYTE 6 ;...ON CHANNEL 6

.BYTE CR,'SUB. DOIT7 DONE, CALLING DCITS8.',O

JSR DOITS8
This program segment will output this message to channel 6:
DOIT7 DONE, CALLING DOITS.
NOTES:

1. The message will always be displayed starting at the

present position. If the message should start on a new line,
then the carriage return should be explicitly included, as in

the example above.

2. Be careful to check that you have not forgotten the
CHANNEL NUMBER argument before the message, or the 0-BYTE
TERMINATOR after the message!

svC #3 (803)

PURPOSE: Input byte from channel.
ARGUMENTS:

X = desired channel number.

ARGUMENTS RETURNED:
A = byte received from channel,
Flags: CY = 1 means End-of-File was encountered.

DESCRIPTION:

SVC 3 inputs a single byte from a selected channel, which
must be assigned to a valid device or file. The value of the
byte returned can be anything, including control characters
($00 to $FF), if the selected channel is assigned to a file.
If assigned to a normal, character-oriented input device,
such as the keyboard, then a CNTRL-Z (ASCII SUB, 16) will
be interpreted as End-of-File. For files, End-of-File is true
only when no more bytes can be read from the file. It is the
programmer's responsibility to check the status of the Carry
after every SVC 3 to insure that End-of-File was not reached.
The A register is not meaningfully returned if the Carry is set.

EXAMPLE:
SVCENB = SAQ
L.DA 480
STA SVCENB ;ENABLE SVCS.
LbX #5 ;SELECT CHANNEL 5
BRK
.BYTE 3 +SVC #3 = INPUT BYTE ON CHANNEL (X)
BCS EOFHI ;BRANCH IF END-OQOF-FILE
CMP #1C! ;WAS INPUT CHARACTER 'C'?

This program segment inputs a character from the file or device
assigned to channel 5 and checks to see if it was an ASCII "C".

NOTES :

1. The remaining flags (other than CY) are not meaningfully
returned; in any case, the decimal mode flag will not be set.

BVC_#4 (#04)
PURPOSE: Output byte over channel.
ARGUMENTS :

X

"

Channel desired.

A

Byte to be output.

ARGUMENTS RETURNED:
FLAGS: CY = 1 if at End-of-File after output operation.
DESCRIPTION:

SVC 4 outputs the byte in the accumulator over the channel
specified in the X register. The channel must be assigned to
a valid file or device. Although there is no need to do so,
application programs may wish to test the Carry flag after
SVC 4 to distingusih whether the character written was the
last character of the file or was re-written over some other
part of the file. If the channel is assigned to a device
instead of a file, the Carry will always be returned set,
since End-of-File has no meaning in this context.

EXAMPLE:
SVCENR = SAQ
LDA #$80
STA SVCENB ;ENABLE SVCS
LDA $509 :BYTE DESIRED TO OUTPUT
LDX $2 ; CHANNEL 2
BRK
.BYTE 4 :SVC 4 = OUTPUT BYTE

JMP THERE

This program segment outputs $09 over channel 2.

SVC #5 ($05)
PURPOSE: Input line of text from channel.
ARGUMENTES :

X = Channel number to read from.

U5 = Address of desired input buffer for line.
ARGUMENTS RETURNED:

A Count of characters in line.

Y = 0.

Flags: CY = 1 if End-of-File encountered.

DESCRIPTION:

SVC 5 inputs a line of text from the file or device assigned
to channel 5. The text will be deposited in a buffer whose
address is specified in U5. The line of text will be terminated
by a $00 byte. After the SVC is processed, the Carry will be
set only if no characters could be read from the channel because
End-of-File was encountered. The A register will contain a
character count for the input line. This count does not include
the $00 terminator. The Y register is always returned as 0 to
facilitate user processing of the line using Indirect, ¥
addressing. If the channel selected is assigned to a device,
then End-of-Line is defined as the first carriage return ($0D)
encountered. This carriage return is converted to the $00
terminator in the buffer, and is not included in the character
count in A.

EXAMPLE :
SVCENB = $AOQ :LOCATION OF SVC ENABLE FLAG
us = SOA :P-REGISTER U5 LOCATION
LDA #$80
STA SVCENB ;ENABLE SVCS
LDA $$00
STA U5
LDA #$10
STA U5+l : DEFINE BUFFER ADDRESS AS $1000.
L.DX #5 ; CHANNEL 5
BRK
.BYTE 5 ,SVC 5 = INPUT LINE FROM CHAN. (X).
BCS EOFHI :BRANCH IF END-OF-FILE

STA NCHLN ;ELSE SAVE COUNT OF CHARACTERS IN LINE
This program segment inputs a line of text from channel 5 and
places it in a buffer starting at address $1000.

NOTES:

1. The system maintains a "Maximum Input Record Length"
parameter for text input, which has a default value of 80 ($50)
characters. If an SVC 5 attempts to input a line with more than
80 characters, then the system will automatically add an
end-of-line character after 80 characters are read. This is
to prevent SVC 5 from wiping out all of memory if the
‘channel is inadvertently assigned to a non-text file which
does not contain end-of-line terminators. The value of the
Maximum Record Length parameter can be altered if it is necessary
to read lines of greater than 80 characters. The system buffers
are only 80 characters long, however, so the user will have to
provide a buffer elsewhere and not use SVC 12 to define the
buffer address.

ARGUMENTS RETURNED:
FLAGS: CY = 1 if at End-of~-File after output operation.
DESCRIPTION:

SVC 4 outputs the byte in the accumulator over the channel
specified in the X register. The channel must be assigned to
a valid file or device. Although there is no need to do so,
application programs may wish to test the Carry flag after
SVC 4 to distingusih whether the character written was the
last character of the file or was re-written over some other
part of the file. If the channel is assigned to a device
instead of a file, the Carry will always be returned set,
since End-of-File has no meaning in this context,.

EXAMPLE:
SVCENB = SAQ
LDA #$80
STA SVCENB ;ENABLE SVCS
LDA #309 ;BYTE DESIRED TO OUTPUT
LDX $2 : CHANNEL 2
BRK
.BYTE 4 ;SVC 4 = OUTPUT BYTE

JMP THERE

“eos

This program segment outputs $09 cver channel 2.

SVC #5 (S05)
PURPOSE: Input line of text from channel.
ARGUMENTES :

X = Channel number to read from.

U5 = Address of desired input buffer for line.
ARGUMENTS RETURNED:

A = Count of characters in line.

Y = 0.

Flags: CY = 1 if End-of-File encountered,

DESCRIPTION:

SVC 5 inputs a line of text from the file or device assigned
to channel 5. The text will be deposited in a buffer whose
address is specified in U5. The line of text will be terminated
by a $00 byte. After the SVC is processed, the Carry will be
set only if no characters could be read from the channel because
End-of-File was encountered. The A register will contain a
character count for the input line. This count does not include
the $00 terminator. The Y register is always returned as 0 to
facilitate user processing of the line using Indirect, Y
addressing. If the channel selected is assigned to a device,
then End-of-Line is defined as the first carriage return ($0D)
encountered. This carriage return is converted to the $00
terminator in the buffer, and is not included in the character
count in A.

EXAMPLE:
SVCENB = SA0 :LOCATION OF SVC ENABLE FLAG
U5 = s0A :P-REGISTER U5 LOCATION
LDA #3580
STA SVCENB ;ENABLE SVCS
LDA #3500
STA U5
LDA #510
STA Us+1 ; DEFINE BUFFER ADDRESS AS $1000.
I.DX #5 : CHANNEL 5
BRK
.BYTE 5 ;8VC 5 = INPUT LINE FROM CHAN. (X).

BCS EOFHI ;BRANCH IF END-OF-FILE

STA NCHLN ;ELSE SAVE COUNT OF CHARACTERS IN LINE
This prograﬁ.segment inputs a line of text from channel 5 and
places it in a buffer starting at address $1000.

NOTES:

1. The system maintains a "Maximum Input Record Length"
parameter for text input, which has a default value of 80 ($50)
characters. If an SVC 5 attempts to input a line with more than
80 characters, then the system will automatically add an
end-of-line character after 80 characters are read. This is
to prevent SVC 5 from wiping out all of memory if the
channel is inadvertently assigned to a non-text file .which
does not contain end-of-line terminators. The value of the
Maximum Record Length parameter can be altered if it is necessary
to read lines of greater than 80 characters. The system buffers
are only 80 characters long, however, so the user will have to
provide a buffer elsewhere and not use SVC 12 to define the
buffer address.

2. The following editing characters are recognized by
SVC 5. These editing characters are not returned in the line,
but instead perform the function indicated:

BACKSPACE, DEL, or RUBOUT ($08 or $7F): Backspace one
character. Will not backspace beyond beginning-of-buffer.

CNTRL-X or CAN ($18): Delete entire line (start over).
RETURN ($0D): End-of-line.
CNTRL-Z ($16): End-of-File (applies only if entered from

device, not in file; must follow carriage return).
SVC #6 ($06)

PURPOSE: Output line of text on channel.
ARGUMENTS:

X Channel desired.

Y Number of characters in line.

U6 = Starting address of line of text.
ARGUMENTS RETURNED: None.
DESCRIPTION:

SVC 6 outputs a line of text over a channel which is
assigned to a valid file or device. U6 must contain the address
of a buffer containing the text to be sent, The Y register

must hold the number of characters to be sent, not including the
line terminator {(which is added by the system).

(continued)

EXAMPLE:

SVCENB B SAQ ;:LOCATION OF SVC-ENABLE FLAG
U6 = s$ocC :LOCATION OF P-REGISTER U6
LDA $#580
STA SVCENB ;ENABLE SVCS
LDA PROD
STA U6 ;:DEFINE ADDRESS OF TEXT TC BE SENT
LDA PROD/256
STA U6+l
LDX #6 ; CHANNEL 6
LDY $#11 ;11 CHARACTERS IN LINE
BRK
.BYTE 6 ;SVC 6 = OUTPUT LINE
PROD .BYTE 'DISK SYSTEM'

s e

This program segment will output "DISK SYSTEM" followed by
an end-of-line character on channel 6.

NOTES:

1., The line to be output cannot exceed 254 characters.

SVC #7 (807)

PURPOSE: OQutput string of text on channel.
ARGUMENTS :

X Channel desired.

Y

Number of characters in string.
U6 = Starting address of string of text.
ARGUMENTS RETURNED: None.
DESCRIPTION:
SVC 7 outputs a string of text over a channel which is
assigned to a valid file or device. U6 must contain the address

of a buffer containing the text to be sent. The Y register
must hold the number of characters to be sent.

EXAMPLE:

SVCENB =

U6 =
LDA
STA
LDA
STA
LDA
STA
LDX
LDY
BRK
.BYTE

PROD .BYTE

“ s

$A0 ;LOCATION OF SVC-ENABLE FLAG
$0C :L,OCATION OF P-REGISTER U6
$580

SVCENB ;ENABLE SVCS

PROD

Ué ;DEFINE ADDRESS OF TEXT T0 BE SENT
PROD/256

U6+1

#6 : CHANNEL 6

#11 ;111 CHARACTERS IN LINE

7 .SVC 7 = OUTPUT STRING

'DISK SYSTEM'

This program segment will output "DISK SYSTEM". NO End-of-line
character will be added by the system.

NOTES:

1. The text to be output cannot exceed 254 characters.

INTERIM MEMORY MAP

(AIM-65 VERSION)

NOTE: THIS IS A PRELIMINARY MEMORY MAP. ALL ADDRESSES ARE
SUBJECT TO CHANGE WITHOUT NOTICE.

Address

$0000-0010

$00A0

$00A1-00CF

$0100-01FF

$0200-47FF

$4800-50FF

$5100-5BFF

$5C00-5CFF

$5D00-5FFF

$6000-7FFF

$8000-85FF
$8600-9EFF
$9FF0-9FE7
$9FE8-9FFF

SA000-FFFF

Description

Pseudo registers U0 through U7. Used by system
only if SVCs are enabled; otherwise, user-RAM.

SVCENB. SVC-enable flag, settable by user
programs. See section on SVCs.

System zero-page ram. Reserved for use by
APEX-65.

Reserved for stack.

User RAM; however, Utility programs such as
FORMAT, DUP, and COPYF also use some of this
RAM during execution.

Interim System Ram for future "overlays".
Reserved for system but not protected in any
way! Do not overwrite.

User Ram.

Default location for system input and output
line buffers (can be altered).

Optional DMA buffers if more than default number
of simultaneously-open files is used.

Recommended location for visible memory board,
if used.

Protected DMA buffers for System.
Protected APEX system nucleus and RAM.
Future Bootstrap ROM.

Disk Controller I-0O ports.

AIM-65 ROMs.

INTERIM SYSTEM GENERATION AND CUSTOMIZING

(AIM VERSION)

In order to make effective use of APEX-63, certain
modifications need to be made for any given target computer.
In particular, the operating system needs to know the number of
disk drives present in the system, and the types of I-O
devices which need to be supported. A conversational SYSGEN
program is planned for later release to perform these functions
easily. For now, however, it will be necessary to perform
the System "customizing" using the method described below.

One feature of APEX that greatly facilitates the
customization process it the startup procedure. When "booted"
up, APEX-65 will read a list of commands on a file called
STARTUP.J and executes them before accepting any keyboard
commands. Therefore, if you have any special needs for your
system, these can be appended to the STARTUP.J file. For
example, if your system needs to load I-O driver routines into
memory, this can be easily accomplished without user
intervention. If certain patches need to be made, they can be
accomplished by simply entering the appropriate SET commands
onto the STARTUP.J file, or a program could be executed to
perform more complex patches.

*%**CAUTION: WHEN USING THE STARTUP.J FILE, YOU MAY ADD ANY
COMMANDS YOU WISH TO THE END OF THE FILE. YOU MAY NOT DELETE
OR REPLACE THE EXISITNG COMMANDS OR THE SYSTEM WILL NOT COME
UP PROPERLY WHEN BOOTED! *%**

You can ascertain what is on the distribution STARTUP.J
file by simply giving a TYPE STARTUP.J command.

Table 1 lists some of the most important addresses you
might wish to patch in the present interim release. These
locations are subject to change. Dont forget to have the
UNPROTECT command preceed any commands that alter system
memory in the STARTUP.J file.

As an example, the following STARTUP.J file will define
a new Ouptut device called "P" (Printer), which has an output
driver subroutine which must be loaded from disk.

GET OVL.Z ;EXISITNG COMMAND ON STARTUP FILE

GET PRINTDRIVER.X ; LOAD PRINTER DRIVER ROUTINE

UNPROTECT ;TEMPORARILY REMOVE SYSTEM PROTECT

SET 8617="P" 8631=00 02 ;ADD P DEVICE, DRIVER ADDR TO TBL.
PROTECT ;RESTORE SYSTEM TO PROTECTED MODE

SYSTEM PARAMETER LOCATIONS

(AIM VERSION)

Address Default Name/Meaning

$8607 Address of Console Character-In driver
routine. Return character in A, bit 7=0

$860A Address of Console Character-Qut driver
routine. Character is in A.

$860D Address of Console key-down test

routine. Returns bit 7 of A=1 if no key
pressed, A=character, bit 7=0 if pressed

$8615 Device Name Table. See listing provided
in following section.

S87FE Number of drives (1 or 2).

$882a Flag. If bit 7 = 1 then ignore any

irrecoverable CRC disk I-O errors and
continue reading/writing.

$8830 Flag. If bit 7 = 1 then Console input
will not be echoed to conscole output.

$8837 End-of-file character for console input.
Default = CNTRL-Z.

$8845 Number of bytes to display per line on
DUMP command.

$8842 Maximum Input record length.

$8855 Address of default system input buffer.

$8857 Address of default system output buf.

$8859 Address of user interrupt service
routine.

Notes:

1. The current version only supports one or two drives.

APEX

DEVICE DRIVER TABLES

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

VERSION 0.2 :AIM

8615
8616
8617
8618
8619
861A
861B
861C

862D
862F
8631
8633
8635
8637
8639
863B

4E
43
00
00
00
00
00
00

C395
1p9D
0000
0000
0000
0000
0000
0000

TR TR Y

DDTI:

gs. ~e o~

.PAGE

'DEVICE DRIVER TABLES'

DNT: DEVICE NAME TABLE.

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

DDTI:

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
WORD
.WORD

DDTO:

.WORD

'N' ;"N" = NULL DEVICE DRIVER

'c’ ;"C" = CONSOLE DEVICE

0

0 sRESERVED FOR CUSTOM DEVICES...
0

0

0

0

DEVICE DRIVER DISPATCH TABLE FOR INPUT.

NULDVR ;NULL DRIVER DEVICE (DTI=X'80)
CIN ;CONSOLE INPUT ROUTINE (DTI=$82)
0

0 ;CUSTOM DRIVER ADDRESSES...

0

0

0

0

DEVICE DRIVER DISPATCH TABLE FOR OUTPUT.

NULDVR ;NULL DRIVER (DTI=X'80)

cour ;CONSOLE OUTPUT ROUTINE (DTI = $82)
0

0 ;CUSTOM DEVICE DRIVERS...

0

0

0

0

